Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 1 addition & 2 deletions mlinsights/mlmodel/interval_regressor.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,6 @@
import numpy.random
from sklearn.base import RegressorMixin, clone, BaseEstimator
from sklearn.utils._joblib import Parallel, delayed
from sklearn.utils.fixes import _joblib_parallel_args
try:
from tqdm import tqdm
except ImportError: # pragma: no cover
Expand Down Expand Up @@ -93,7 +92,7 @@ def _fit_piecewise_estimator(i, est, X, y, sample_weight, alpha):

self.estimators_ = \
Parallel(n_jobs=self.n_jobs, verbose=verbose,
**_joblib_parallel_args(prefer='threads'))(
prefer='threads')(
delayed(_fit_piecewise_estimator)(
i, estimators[i], X, y, sample_weight, self.alpha)
for i in loop)
Expand Down
6 changes: 2 additions & 4 deletions mlinsights/mlmodel/piecewise_estimator.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,6 @@
from sklearn.linear_model import LinearRegression, LogisticRegression
from sklearn.preprocessing import KBinsDiscretizer
from sklearn.utils._joblib import Parallel, delayed
from sklearn.utils.fixes import _joblib_parallel_args
try:
from tqdm import tqdm
except ImportError: # pragma: no cover
Expand Down Expand Up @@ -260,8 +259,7 @@ def fit(self, X, y, sample_weight=None):
rnd = None

self.estimators_ = \
Parallel(n_jobs=self.n_jobs, verbose=verbose,
**_joblib_parallel_args(prefer='threads'))(
Parallel(n_jobs=self.n_jobs, verbose=verbose, prefer='threads')(
delayed(_fit_piecewise_estimator)(
i, estimators[i], X, y, sample_weight, association, nb_classes, rnd)
for i in loop)
Expand All @@ -288,7 +286,7 @@ def _apply_predict_method(self, X, method, parallelized, dimout):

association = self.transform_bins(X)

indpred = Parallel(n_jobs=self.n_jobs, **_joblib_parallel_args(prefer='threads'))(
indpred = Parallel(n_jobs=self.n_jobs, prefer='threads')(
delayed(parallelized)(i, model, X, association)
for i, model in enumerate(self.estimators_))

Expand Down