Skip to content

siddhaka/ai-roadmap

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

29 Commits
 
 

Repository files navigation

🚀This repo is all you need for AIML

This cheatsheet serves as a practical roadmap and resource guide for anyone looking to get into GenAI or Agentic AI.

I'm actively exploring more resources and refining this roadmap to make it more detailed and genuinely helpful — so ⭐ it if you find it valuable!


📋 Table of Contents


0. Math Foundations

S.No Topic Description Resources
0 Math for ML/DL Linear Algebra, Probability, Statistics, Calculus 3Blue1Brown · CampusX

1. Python Basics

S.No Topic Description Resources
1 Python Fundamentals Basics, data structures, file handling, exception handling, OOP FreeCodeCamp

2. Streamlit

S.No Topic Description Resources
2 Streamlit Basics UI building, web apps for ML Chai aur Code

3. FastAPI

S.No Topic Description Resources
3 FastAPI Fundamentals REST APIs, async programming, model deployment FastAPI Docs · FastAPI Course FastAPI Course

4. Machine Learning — Core Basics

S.No Topic Description Resources
4 ML Fundamentals Classification, Regression, Pipelines, Feature Engineering CampusX · Stanford CS229
5 ML Evaluation Accuracy, Precision, Recall, Confusion Matrix, ROC-AUC StatQuest
6 Feature Scaling Normalization, Standardization, MinMax, Robust Scaling Scikit-learn Docs
7 Data Labeling Manual annotation, Label Studio, Roboflow Label Studio · Roboflow

🛠 P1: Core ML Projects

Project Description Datasets Tech Stack
ML Classification App Build a classification app using sklearn + Streamlit Iris, Titanic, MNIST sklearn, Streamlit, pandas
Regression Price Predictor Housing price prediction with feature engineering Boston Housing, California Housing scikit-learn, seaborn, matplotlib

5. Machine Learning — Deep Dive

S.No Topic Description Resources
8 Unsupervised ML Clustering (K-Means, DBSCAN, Hierarchical), Dimensionality Reduction (PCA, t-SNE, UMAP) StatQuest
9 Ensemble Methods Bagging, Boosting (XGBoost, LightGBM), Stacking Krish Naik
10 Hyperparameter Tuning GridSearchCV, RandomSearch, Optuna, Bayesian Optimization Optuna Docs
11 Core ML Concepts Bias-variance tradeoff, Underfitting/Overfitting, Regularization (L1/L2) Andrew Ng ML

6. ML for NLP

S.No Topic Description Resources
12 Traditional NLP Text preprocessing, One-Hot Encoding, Bag of Words, TF-IDF, Word2Vec Krish Naik

🛠 P2: NLP Projects

Project Description Datasets Tech Stack
Text Classifier Spam detection or sentiment analysis using BoW/TF-IDF SMS Spam, IMDb Reviews sklearn, NLTK, pandas
Word2Vec Explorer Visualize similarity between words using Word2Vec Google News Word2Vec Gensim, matplotlib, seaborn

7. DL Basics

S.No Topic Description Resources
13 Deep Learning Fundamentals Neural Networks, Loss Functions, Optimizers, Activation Functions 3Blue1Brown · MIT 6.S191 Campus X

8. Core DL

S.No Topic Description Resources
14 Neural Networks & ANN Feedforward networks, backpropagation, gradient descent MIT 6.S191 · 3Blue1Brown Campus X
15 CNN Convolutional Neural Networks for computer vision Campus X MIT 6.S191 · CS231n
16 RNN & LSTM Sequential data modeling, time series Campus X MIT 6.S191 · Colah's Blog

9. DL Frameworks

S.No Topic Description Resources
17 PyTorch/TensorFlow Tensors, model building, training loops PyTorch Docs · TensorFlow Docs · PyTorch Tutorial

🛠 P3: Deep Learning Projects

Project Description Datasets Tech Stack
Image Classifier Build CNN to classify cats vs dogs Dogs vs Cats (Kaggle) TensorFlow/Keras, PyTorch
Sentiment with LSTM Sentiment prediction using LSTM networks IMDb, Twitter Sentiment Keras, PyTorch, torchtext

10. MLOps

S.No Topic Description Resources
18 MLOps Fundamentals Model versioning, experiment tracking, CI/CD for ML, monitoring MLOps Playlist · MLOps Best Practices
19 Model Deployment Docker, cloud deployment, model serving, A/B testing MLOps Playlist
20 Experiment Tracking MLflow, Weights & Biases, model registry MLflow Docs · Weights & Biases

11. Transformers

S.No Topic Description Resources
21 Transformer Architecture Self-attention, Multi-head attention, Positional Encoding, Encoder-Decoder 3Blue1Brown · Campus X
22 Tokenization BPE, SentencePiece, GPT-2 tokenizer, Hugging Face tokenizers Campus X Andrej Karpathy · Original Paper

12. Introduction to Gen AI

S.No Topic Description Resources
23 GenAI Fundamentals AI vs ML vs DL vs GenAI, How GPT/LLMs are trained, LLM evolution Fireship · Two Minute Papers
24 LLM Evaluation BLEU, ROUGE, Perplexity, Human Evaluation, Benchmarks Hugging Face Evaluation
25 Ethics & AI Safety Hallucination, bias, responsible deployment, alignment AI Safety Course

13. Large Language Models (LLMs) - Advanced

S.No Topic Description Resources
26 PEFT (Parameter Efficient Fine-Tuning) LoRA, QLoRA, AdaLoRA, Prefix Tuning, P-Tuning Hugging Face PEFT · LoRA Paper
27 LoRA & QLoRA Low-Rank Adaptation, Quantized LoRA for efficient fine-tuning QLoRA Paper · Practical LoRA
28 Quantization Techniques INT8, INT4, GPTQ, AWQ, GGML/GGUF formats BitsAndBytes · GPTQ
29 Model Compression Pruning, Distillation, Quantization-Aware Training Neural Compression
30 Advanced Fine-tuning Full fine-tuning vs PEFT, Instruction tuning, RLHF basics Hugging Face Fine-tuning

14. Introduction to LangChain

S.No Topic Description Resources
31 LangChain Fundamentals Components, Chains, Agents, Memory LangChain Docs · LangChain Tutorial
32 LLM Integration OpenAI, Ollama, Hugging Face, Groq integration Ollama Setup · Groq API
33 Prompt Engineering Zero-shot, few-shot, chain-of-thought, prompt optimization OpenAI Cookbook · Prompt Engineering Guide

🛠 P4: LangChain Projects

Project Description Tech Stack
Chatbot with LangChain Build intelligent chatbot using LangChain + LLM + Streamlit LangChain, Streamlit, Ollama/OpenAI
Document Summarizer Summarize PDF/Text documents with LLMs LangChain, PyPDF, Hugging Face Transformers

15. RAG (Retrieval Augmented Generation)

S.No Topic Description Resources
34 RAG Fundamentals Retrieval pipeline, embedding models, vector similarity RAG Tutorial · LangChain RAG
35 Advanced RAG Multi-query retrieval, re-ranking, hybrid search Pinecone RAG Guide

🛠 P5: RAG Projects

Project Description Tech Stack
PDF Q&A with RAG Upload PDF → extract → chunk → embed → query via LLM LangChain, FAISS, OpenAI/Groq, Streamlit
Multi-Document RAG Query across multiple documents with source attribution ChromaDB, LangChain, sentence-transformers

16. Vector Databases

S.No Topic Description Resources
36 Vector DB Fundamentals FAISS, ChromaDB, Pinecone, Weaviate, similarity search Pinecone Docs · ChromaDB
37 Embedding Models sentence-transformers, OpenAI embeddings, custom embeddings Sentence Transformers

17. Agentic AI

S.No Topic Description Resources
38 AI Agent Fundamentals Agent architecture, planning, tool use, memory systems Lilian Weng's Blog
39 Tool-Using Agents Function calling, external APIs, code execution OpenAI Function Calling
40 Multi-Agent Systems Agent collaboration, communication protocols AutoGen · CrewAI
41 ReAct & Planning Reasoning + Acting, chain-of-thought for agents ReAct Paper

🛠 P6: Agentic AI Projects

Project Description Tech Stack
Research Assistant Agent AI agent that can search web, summarize, and synthesize information LangChain, Tavily/SerpAPI, OpenAI
Code Review Agent Agent that reviews code, suggests improvements, runs tests GitHub API, LangChain, code execution tools

18. LangGraph & Advanced Agents

S.No Topic Description Resources
42 LangGraph Fundamentals State machines, graph-based workflows for agents Campus X · LangGraph Tutorial
43 Complex Agent Workflows Multi-step reasoning, conditional flows, human-in-the-loop Campus X
44 Agent Orchestration Managing multiple agents, workflow optimization Campus X

🛠 P7: LangGraph Projects

Project Description Tech Stack
Multi-Step Research Agent Agent that plans research, gathers info, and creates reports LangGraph, multiple LLMs, web search APIs
Customer Service Agent Complex customer service with escalation and human handoff LangGraph, FastAPI, database integration

19. Model Context Protocol (MCP)

S.No Topic Description Resources
45 MCP Fundamentals Protocol for connecting AI assistants to external data sources and tools Campus X · MCP GitHub
46 MCP Implementation Building MCP servers, client integration, tool development Krishnaik

20. FastAPI (Backend for AI)

S.No Topic Description Resources
47 AI Model Deployment Serving ML/DL models, batch processing, monitoring MLOps Best Practices · MLOps Playlist

📚 Resources

🎥 Popular YouTube Channels

📖 Essential Books

📄 Key Research Papers

🤝 Contributing

Feel free to contribute to this roadmap by:

  • Adding new resources and tutorials
  • Suggesting improvements to the learning path
  • Sharing your project experiences
  • Reporting broken links or outdated content

Star this repository if you find it helpful!

This roadmap is continuously updated with the latest developments in Generative AI and Machine Learning.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published