Skip to content

Conversation

@aodecipher
Copy link
Contributor

Remark 1.3.10 implementation (partial): Add binary digit extraction machinery (binaryDigit, binaryToTernaryFn). Complete f_zero_set_measurable proof decomposing zero set into open and countable parts. Complete sublevel_set_measurable proof structure using convexity. Complete exists_nonmeasurable_with_cantor_image showing F = VitaliSet ∩ A is non-measurable. Refactor VitaliSet.nonmeasurable into reusable theorem. Update BinaryToTernaryProperties to use injective_on_nonterminating. Add helper lemmas for binary digits, dyadic rationals, and floor manipulations.

- Add Remark_1_3_10 namespace with BinaryToTernaryProperties structure
- Add detailed proof sketch with domain/codomain considerations
- Structure binary-to-ternary function construction and properties
- Update example to use new namespace structure
- Explicitly use UnsignedMeasurable.TFAE to reduce to condition (viii)
- Apply List.TFAE.out to get equivalence: UnsignedMeasurable f ↔ ∀ t, LebesgueMeasurable {x | f x ≤ t}
- Reduce proof goal to showing sublevel sets are measurable
- Improve comments explaining the proof strategy using monotonicity
- Add zero_outside property to BinaryToTernaryProperties structure
- Add helper lemmas: f_le_one, f_zero_outside, sublevel_set_measurable
- Complete f_measurable cases: t < 0 (empty set), t ≥ 1 (universal set), structure for 0 < t < 1
- Enhance documentation for binaryToTernary_exists and exists_nonmeasurable_with_cantor_image
- Improve proof sketches in main example preimage case
- Add zero_at_zero and zero_set_countable properties to BinaryToTernaryProperties
- Add f_zero_at_zero and f_zero_set_in_interval_countable helper lemmas
- Complete f_zero_set_measurable proof: decompose {f = 0} into open set and countable set
- Remove unused and incorrect lemmas: f_zero_set_eq, iic_union_ioi_measurable
- Fix comment: dyadic rationals = terminating binaries
…able_with_cantor_image

- Replace sublevel_set_measurable sorry with proof structure: extract real from EReal, define S, show convexity via MonotoneOn.convex_le, show boundedness
- Complete exists_nonmeasurable_with_cantor_image proof: show F = VitaliSet ∩ A is non-measurable by contradiction using VitaliSet.nonmeasurable
- Enhance example final sorry with detailed proof sketch for preimage argument using injectivity
- Refactor VitaliSet.nonmeasurable into separate theorem in Section_1_2_3.lean for reusability
…ation

- Change BinaryToTernaryProperties: bijective_on_nonterminating → injective_on_nonterminating
- Add binaryDigit function: extracts j-th binary digit using floor and mod
- Add binaryToTernaryFn: implements g(x) = ∑ 2·bⱼ(x)·3^{-j} for x ∈ [0,1]
- Add helper lemmas: binaryDigit bounds, zero/one cases, summability, geometric series
- Add DyadicRationals definition and countability proof
- Add floor manipulation lemmas for monotonicity proof (floor_two_mul_odd_ge, etc.)
- Start binaryToTernary_props proof: nonneg, bounded, zero_outside, zero_at_zero, zero_set_countable, monotone_on, image_in_cantor, injective_on_nonterminating (partial, has sorry)
- Update references from bijective_on_nonterminating to injective_on_nonterminating
@teorth teorth merged commit 8d63eb2 into teorth:main Jan 10, 2026
3 checks passed
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

2 participants