Skip to content

This repository contains machine learning models and algorithms for implementing dynamic pricing strategies in various business contexts. Dynamic pricing is an approach where prices are flexibly adjusted based on real-time market demands, competitor pricing, customer behavior patterns, inventory levels, and other relevant factors.

Notifications You must be signed in to change notification settings

thecoder8890/dynamic-pricing-strategies-ml

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

5 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

πŸ§β€β™‚οΈ Dynamic Pricing Strategies ML - The Elves' Marketplace

Welcome to the Elves' Guide to Dynamic Pricing Magic! ✨

This repository contains a comprehensive educational framework for understanding and implementing dynamic pricing strategies in e-commerce using Python and machine learning. The system combines technical accuracy with engaging storytelling to make complex pricing concepts accessible to users with varying technical backgrounds.

πŸ“‹ Table of Contents

  1. Quick Start
  2. What You'll Find Here
  3. Comprehensive Documentation
  4. Features
  5. Dataset Details
  6. Perfect For
  7. Architecture Overview

πŸš€ Quick Start

5-Minute Setup

# Clone the repository
git clone https://github.com/thecoder8890/dynamic-pricing-strategies-ml.git
cd dynamic-pricing-strategies-ml

# Install dependencies
pip install -r requirements.txt

# Run the complete setup and demo
python quickstart.py

# Launch the interactive tutorial
jupyter notebook dynamic_pricing_elf_guide.ipynb

Alternative Manual Setup

# Generate synthetic data
python generate_dataset.py

# Test the system
python pricing_system.py

# Run pricing demo
python demo_pricing_system.py

# Try the API interface
python pricing_api.py

Basic Usage Example

from pricing_system import rule_based_pricing, predict_optimal_price

# Rule-based pricing
price, adjustments = rule_based_pricing(
    original_price=100.0,
    inventory_level=15,
    is_holiday=True,
    is_weekend=False,
    customer_segment='Loyal'
)
print(f"New price: ${price:.2f}, Adjustments: {adjustments}")

# ML-based pricing optimization
result = predict_optimal_price(
    original_price=100.0,
    inventory_level=15,
    is_holiday=True,
    is_weekend=False,
    competitor_price=105.0
)
print(f"Optimal price: ${result['predicted_price']:.2f}")

🎯 What You'll Find Here

πŸ“š Core Files

  • dynamic_pricing_elf_guide.ipynb - Interactive Jupyter notebook tutorial with complete pricing framework
  • generate_dataset.py - Synthetic e-commerce data generator with realistic pricing factors
  • create_notebook.py - Notebook structure generator with pricing algorithms
  • complete_notebook.py - Advanced features and ML model implementation
  • generate_flow_diagrams.py - Creates visual flow diagrams for system architecture
  • elves_marketplace_data.csv - Generated dataset (25k transactions, 34 products)
  • requirements.txt - Complete Python dependency list

πŸ§™β€β™‚οΈ What You'll Learn

  1. Data Generation & Analysis - Create and explore realistic e-commerce datasets
  2. Dynamic Pricing Concepts - Understand price elasticity, customer segmentation, competitive positioning
  3. Algorithm Implementation - Build rule-based and machine learning pricing systems
  4. Revenue Optimization - Learn to maximize revenue through optimal pricing strategies
  5. Business Applications - Apply pricing strategies to real-world scenarios
  6. Performance Evaluation - Measure and optimize pricing system effectiveness

πŸ“– Comprehensive Documentation

This repository includes extensive documentation for multiple audiences:

For Developers & Technical Teams

  • πŸ“‹ TECHNICAL_DOCUMENTATION.md - Complete technical specifications

    • System architecture and data flow diagrams
    • Detailed API documentation for all functions
    • Algorithm implementations and performance specifications
    • Configuration parameters and deployment guidelines
  • πŸ”§ API_REFERENCE.md - Function-level API documentation

    • Complete parameter specifications and return values
    • Usage examples and error handling
    • Performance benchmarks and scalability guidelines
    • Integration patterns and best practices
  • πŸ‘¨β€πŸ’» DEVELOPER_GUIDE.md - Implementation and development guide

    • Development environment setup
    • Code architecture and design patterns
    • Testing frameworks and debugging tools
    • Extension patterns and deployment strategies

For Business Analysts & Stakeholders

  • πŸ“Š BUSINESS_ANALYST_GUIDE.md - Business-focused documentation
    • Executive summary and ROI analysis
    • Pricing strategy frameworks and KPIs
    • Business terminology glossary
    • Implementation roadmap and change management

Visual System Architecture

  • πŸ“ docs/ - Flow diagrams and visual documentation
    • System architecture diagrams
    • Pricing algorithm flowcharts
    • ML model training processes
    • Business workflow visualizations

🎭 Features

Interactive Learning Environment

  • Jupyter Notebook Interface - Step-by-step guided learning experience
  • Interactive Widgets - Real-time pricing experimentation with sliders and controls
  • Visual Analytics - Beautiful charts and plots using matplotlib, seaborn, and plotly
  • Educational Storytelling - Complex concepts explained through engaging elf marketplace metaphors

Advanced Pricing Algorithms

  • Rule-Based Pricing Engine - Configurable business logic with inventory, seasonal, and customer-based rules
  • Machine Learning Models - Linear regression with feature engineering and revenue optimization
  • Hybrid Strategies - Combination approaches balancing business rules with ML insights
  • A/B Testing Framework - Compare pricing strategy effectiveness

Production-Ready Components

  • Data Generation System - Scalable synthetic data creation with realistic market dynamics
  • API Integration - RESTful pricing service with caching and performance optimization
  • Performance Monitoring - Built-in metrics and KPI tracking
  • Error Handling - Comprehensive validation and fallback mechanisms

πŸ“Š Dataset Details

Synthetic E-commerce Dataset

  • 25,000 transactions across full 12-month period (2023)
  • 34 unique products across 5 categories (Potions, Tools, Jewelry, Scrolls, Enchanted Items)
  • 5,000 unique customers with realistic behavior patterns
  • Dynamic pricing factors including inventory levels, seasonal patterns, and competitive data

Realistic Market Dynamics

  • Holiday seasonality with 3 major seasonal periods
  • Inventory-based pricing with scarcity and clearance effects
  • Customer segmentation (New, Regular, Loyal, High-Value)
  • Competitive pricing with market comparison data
  • Weekend/weekday patterns reflecting shopping behavior

Data Schema

Column Type Description
transaction_id string Unique transaction identifier
product_id string Product identifier (ELF_XXX format)
product_name string Human-readable product name
category string Product category
original_price float Base price before dynamic adjustments
price_paid float Final transaction price
quantity int Number of units purchased
timestamp datetime Transaction date and time
customer_id string Customer identifier
customer_segment string Customer classification
inventory_level_before_sale int Stock level at time of sale
competitor_price_avg float Average market price
holiday_season int Holiday period indicator

🌟 Perfect For

Primary Audiences

  • Data Scientists & ML Engineers - Learn pricing algorithm implementation and optimization
  • Business Analysts - Understand pricing strategy frameworks and business impact
  • E-commerce Professionals - Apply dynamic pricing to online retail scenarios
  • Students & Researchers - Study real-world applications of ML in business

Use Cases

  • Revenue Optimization Projects - Implement data-driven pricing strategies
  • Educational Training - Teach dynamic pricing concepts with hands-on examples
  • Proof of Concept Development - Prototype pricing systems before production implementation
  • Research & Development - Experiment with advanced pricing algorithms and strategies

πŸ—οΈ Architecture Overview

System Components

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                    Dynamic Pricing System                   β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚                                                             β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚
β”‚  β”‚   Data Layer    β”‚  β”‚ Algorithm Layer β”‚  β”‚ Interface Layer β”‚ β”‚
β”‚  β”‚                 β”‚  β”‚                 β”‚  β”‚                 β”‚ β”‚
β”‚  β”‚ β€’ Data Generatorβ”‚  β”‚ β€’ Rule-based    β”‚  β”‚ β€’ Jupyter       β”‚ β”‚
β”‚  β”‚ β€’ CSV Storage   β”‚  β”‚ β€’ ML Models     β”‚  β”‚ β€’ Interactive   β”‚ β”‚
β”‚  β”‚ β€’ Validation    β”‚  β”‚ β€’ Optimization  β”‚  β”‚ β€’ Widgets       β”‚ β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚
β”‚                                                             β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Key Technologies

  • Python 3.8+ - Core programming language
  • Jupyter Notebooks - Interactive development environment
  • scikit-learn - Machine learning algorithms
  • pandas & numpy - Data manipulation and analysis
  • matplotlib, seaborn, plotly - Data visualization
  • ipywidgets - Interactive notebook components

🀝 Contributing

We welcome contributions! Please see our contributing guidelines and feel free to:

  • Report bugs or suggest improvements
  • Add new pricing algorithms or strategies
  • Improve documentation or examples
  • Share real-world use cases and results

πŸ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

πŸ§β€β™‚οΈ Created with Magic

This educational resource combines technical accuracy with engaging storytelling to make complex pricing concepts accessible and enjoyable to learn. The whimsical "elves marketplace" theme helps demystify sophisticated algorithms while maintaining rigorous technical standards.


May your prices be optimal and your revenues abundant! ✨

Ready to begin your dynamic pricing journey? Start with the Quick Start guide above, then dive into the comprehensive documentation for your specific role and use case.

About

This repository contains machine learning models and algorithms for implementing dynamic pricing strategies in various business contexts. Dynamic pricing is an approach where prices are flexibly adjusted based on real-time market demands, competitor pricing, customer behavior patterns, inventory levels, and other relevant factors.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published