Skip to content

Improve load_weights and the test coverage. #21454

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jul 6, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 5 additions & 1 deletion keras/src/legacy/saving/legacy_h5_format.py
Original file line number Diff line number Diff line change
Expand Up @@ -318,12 +318,14 @@ def save_attributes_to_hdf5_group(group, name, data):
group.attrs[name] = data


def load_weights_from_hdf5_group(f, model):
def load_weights_from_hdf5_group(f, model, skip_mismatch=False):
"""Implements topological (order-based) weight loading.

Args:
f: A pointer to a HDF5 group.
model: Model instance.
skip_mismatch: Boolean, whether to skip loading of weights
where there is a mismatch in the shape of the weights,

Raises:
ValueError: in case of mismatch between provided layers
Expand Down Expand Up @@ -379,6 +381,7 @@ def load_weights_from_hdf5_group(f, model):
layer,
symbolic_weights,
weight_values,
skip_mismatch=skip_mismatch,
name=f"layer #{k} (named {layer.name})",
)

Expand All @@ -403,6 +406,7 @@ def load_weights_from_hdf5_group(f, model):
model,
symbolic_weights,
weight_values,
skip_mismatch=skip_mismatch,
name="top-level model",
)

Expand Down
39 changes: 30 additions & 9 deletions keras/src/saving/saving_api.py
Original file line number Diff line number Diff line change
Expand Up @@ -249,32 +249,51 @@ def save_weights(
@keras_export("keras.saving.load_weights")
def load_weights(model, filepath, skip_mismatch=False, **kwargs):
filepath_str = str(filepath)

# Get the legacy kwargs.
objects_to_skip = kwargs.pop("objects_to_skip", None)
by_name = kwargs.pop("by_name", None)
if kwargs:
raise ValueError(f"Invalid keyword arguments: {kwargs}")

if filepath_str.endswith(".keras"):
if kwargs:
raise ValueError(f"Invalid keyword arguments: {kwargs}")
if objects_to_skip is not None:
raise ValueError(
"`objects_to_skip` only supports loading '.weights.h5' files."
f"Received: {filepath}"
)
if by_name is not None:
raise ValueError(
"`by_name` only supports loading legacy '.h5' or '.hdf5' "
f"files. Received: {filepath}"
)
saving_lib.load_weights_only(
model, filepath, skip_mismatch=skip_mismatch
)
elif filepath_str.endswith(".weights.h5") or filepath_str.endswith(
".weights.json"
):
objects_to_skip = kwargs.pop("objects_to_skip", None)
if kwargs:
raise ValueError(f"Invalid keyword arguments: {kwargs}")
if by_name is not None:
raise ValueError(
"`by_name` only supports loading legacy '.h5' or '.hdf5' "
f"files. Received: {filepath}"
)
saving_lib.load_weights_only(
model,
filepath,
skip_mismatch=skip_mismatch,
objects_to_skip=objects_to_skip,
)
elif filepath_str.endswith(".h5") or filepath_str.endswith(".hdf5"):
by_name = kwargs.pop("by_name", False)
if kwargs:
raise ValueError(f"Invalid keyword arguments: {kwargs}")
if not h5py:
raise ImportError(
"Loading a H5 file requires `h5py` to be installed."
)
if objects_to_skip is not None:
raise ValueError(
"`objects_to_skip` only supports loading '.weights.h5' files."
f"Received: {filepath}"
)
with h5py.File(filepath, "r") as f:
if "layer_names" not in f.attrs and "model_weights" in f:
f = f["model_weights"]
Expand All @@ -283,7 +302,9 @@ def load_weights(model, filepath, skip_mismatch=False, **kwargs):
f, model, skip_mismatch
)
else:
legacy_h5_format.load_weights_from_hdf5_group(f, model)
legacy_h5_format.load_weights_from_hdf5_group(
f, model, skip_mismatch
)
else:
raise ValueError(
f"File format not supported: filepath={filepath}. "
Expand Down
108 changes: 70 additions & 38 deletions keras/src/saving/saving_api_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@
from absl.testing import parameterized

from keras.src import layers
from keras.src.legacy.saving.legacy_h5_format import save_model_to_hdf5
from keras.src.models import Sequential
from keras.src.saving import saving_api
from keras.src.testing import test_case
Expand Down Expand Up @@ -53,7 +54,18 @@ def test_save_h5_format(self):
"""Test saving model in h5 format."""
model = self.get_model()
filepath_h5 = os.path.join(self.get_temp_dir(), "test_model.h5")
saving_api.save_model(model, filepath_h5)

# Verify the warning.
with mock.patch.object(logging, "warning") as mock_warn:
saving_api.save_model(model, filepath_h5)
mock_warn.assert_called_once_with(
"You are saving your model as an HDF5 file via "
"`model.save()` or `keras.saving.save_model(model)`. "
"This file format is considered legacy. "
"We recommend using instead the native Keras format, "
"e.g. `model.save('my_model.keras')` or "
"`keras.saving.save_model(model, 'my_model.keras')`. "
)
self.assertTrue(os.path.exists(filepath_h5))
os.remove(filepath_h5)

Expand Down Expand Up @@ -203,18 +215,36 @@ def get_model(self, dtype=None):

@parameterized.named_parameters(
named_product(
save_format=["keras", "weights.h5", "h5"],
source_dtype=["float64", "float32", "float16", "bfloat16"],
dest_dtype=["float64", "float32", "float16", "bfloat16"],
)
)
def test_load_keras_weights(self, source_dtype, dest_dtype):
def test_load_weights(self, save_format, source_dtype, dest_dtype):
"""Test loading keras weights."""
src_model = self.get_model(dtype=source_dtype)
filepath = os.path.join(self.get_temp_dir(), "test_weights.weights.h5")
src_model.save_weights(filepath)
src_weights = src_model.get_weights()
if save_format == "keras":
filepath = os.path.join(self.get_temp_dir(), "test_weights.keras")
src_model.save(filepath)
elif save_format == "weights.h5":
filepath = os.path.join(
self.get_temp_dir(), "test_weights.weights.h5"
)
src_model.save_weights(filepath)
elif save_format == "h5":
if "bfloat16" in (source_dtype, dest_dtype):
raise self.skipTest(
"bfloat16 dtype is not supported in legacy h5 format."
)
filepath = os.path.join(self.get_temp_dir(), "test_weights.h5")
save_model_to_hdf5(src_model, filepath)
else:
raise ValueError(f"Unsupported save format: {save_format}")

dest_model = self.get_model(dtype=dest_dtype)
dest_model.load_weights(filepath)

src_weights = src_model.get_weights()
dest_weights = dest_model.get_weights()
for orig, loaded in zip(src_weights, dest_weights):
self.assertAllClose(
Expand All @@ -224,13 +254,41 @@ def test_load_keras_weights(self, source_dtype, dest_dtype):
rtol=0.01,
)

def test_load_h5_weights_by_name(self):
"""Test loading h5 weights by name."""
model = self.get_model()
filepath = os.path.join(self.get_temp_dir(), "test_weights.weights.h5")
model.save_weights(filepath)
with self.assertRaisesRegex(ValueError, "Invalid keyword arguments"):
model.load_weights(filepath, by_name=True)
def test_load_weights_invalid_kwargs(self):
src_model = self.get_model()
keras_filepath = os.path.join(self.get_temp_dir(), "test_weights.keras")
weight_h5_filepath = os.path.join(
self.get_temp_dir(), "test_weights.weights.h5"
)
legacy_h5_filepath = os.path.join(
self.get_temp_dir(), "test_weights.h5"
)
src_model.save(keras_filepath)
src_model.save_weights(weight_h5_filepath)
save_model_to_hdf5(src_model, legacy_h5_filepath)

dest_model = self.get_model()
# Test keras file.
with self.assertRaisesRegex(
ValueError, r"only supports loading '.weights.h5' files."
):
dest_model.load_weights(keras_filepath, objects_to_skip=[])
with self.assertRaisesRegex(
ValueError, r"only supports loading legacy '.h5' or '.hdf5' files."
):
dest_model.load_weights(keras_filepath, by_name=True)
with self.assertRaisesRegex(ValueError, r"Invalid keyword arguments"):
dest_model.load_weights(keras_filepath, bad_kwarg=None)
# Test weights.h5 file.
with self.assertRaisesRegex(
ValueError, r"only supports loading legacy '.h5' or '.hdf5' files."
):
dest_model.load_weights(weight_h5_filepath, by_name=True)
# Test h5 file.
with self.assertRaisesRegex(
ValueError, r"only supports loading '.weights.h5' files."
):
dest_model.load_weights(legacy_h5_filepath, objects_to_skip=[])

def test_load_weights_invalid_extension(self):
"""Test loading weights with unsupported extension."""
Expand All @@ -251,29 +309,3 @@ def test_load_sharded_weights(self):
dest_weights = dest_model.get_weights()
for orig, loaded in zip(src_weights, dest_weights):
self.assertAllClose(orig, loaded)


class SaveModelTestsWarning(test_case.TestCase):
def get_model(self):
return Sequential(
[
layers.Dense(5, input_shape=(3,)),
layers.Softmax(),
]
)

def test_h5_deprecation_warning(self):
"""Test deprecation warning for h5 format."""
model = self.get_model()
filepath = os.path.join(self.get_temp_dir(), "test_model.h5")

with mock.patch.object(logging, "warning") as mock_warn:
saving_api.save_model(model, filepath)
mock_warn.assert_called_once_with(
"You are saving your model as an HDF5 file via "
"`model.save()` or `keras.saving.save_model(model)`. "
"This file format is considered legacy. "
"We recommend using instead the native Keras format, "
"e.g. `model.save('my_model.keras')` or "
"`keras.saving.save_model(model, 'my_model.keras')`. "
)