-
Notifications
You must be signed in to change notification settings - Fork 43
Validate exhaustive autotuning for FP8 Inductor templates #355
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
jananisriram
wants to merge
1
commit into
main
Choose a base branch
from
export-D80958642
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
+4
−0
Conversation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This pull request was exported from Phabricator. Differential Revision: D80958642 |
jananisriram
added a commit
to jananisriram/pytorch
that referenced
this pull request
Aug 25, 2025
…ates (pytorch#161442) Summary: X-link: meta-pytorch/tritonbench#355 Pull Request resolved: pytorch#161442 Validate exhaustive autotuning for FP8 Inductor templates: scaled MM templates require `block_k >= 32`. Before, exhaustive autotuning defaulted to a limited set of autotuning configs, as limitations for exhaustively autotuning on FP8 shapes had not been tested. Test Plan: ``` CUDA_VISIBLE_DEVICES=0 TRITON_PRINT_AUTOTUNING=1 TRITON_ALWAYS_COMPILE=1 TORCH_LOGS=+inductor TORCHINDUCTOR_FORCE_DISABLE_CACHES=1 ENABLE_PERSISTENT_TMA_MATMUL=1 TORCHINDUCTOR_MAX_AUTOTUNE_GEMM=1 TORCHINDUCTOR_MAX_AUTOTUNE_GEMM_SEARCH_SPACE=DEFAULT buck2 run mode/{opt,inplace} pytorch/t ritonbench:run -- --op fp8_gemm --only torch_fp8_gemm,pt2_fp8_gemm --metrics tflops,accuracy --input-loader=/home/jananisriram/personal/exhaustive_autotune_rowwise_persistent_tma/json_fi les/rowwise_ptma_0.json --output="/home/jananisriram/personal/exhaustive_autotune_rowwise_persistent_tma/autotune/gpu0_bench.csv" --atol=1e-2 --rtol=0.5 2>&1 | tee ~/personal/exhaustive_ autotune_rowwise_persistent_tma/autotune/gpu0.log ``` autotunes on the maximum configs available, rather than the defaults, and skips configs not compatible with TMA. Rollback Plan: Differential Revision: D80958642
jananisriram
added a commit
to jananisriram/pytorch
that referenced
this pull request
Aug 26, 2025
…ates (pytorch#161442) Summary: X-link: meta-pytorch/tritonbench#355 Validate exhaustive autotuning for FP8 Inductor templates: scaled MM templates require `block_k >= 32`. Before, exhaustive autotuning defaulted to a limited set of autotuning configs, as limitations for exhaustively autotuning on FP8 shapes had not been tested. Test Plan: ``` CUDA_VISIBLE_DEVICES=0 TRITON_PRINT_AUTOTUNING=1 TRITON_ALWAYS_COMPILE=1 TORCH_LOGS=+inductor TORCHINDUCTOR_FORCE_DISABLE_CACHES=1 ENABLE_PERSISTENT_TMA_MATMUL=1 TORCHINDUCTOR_MAX_AUTOTUNE_GEMM=1 TORCHINDUCTOR_MAX_AUTOTUNE_GEMM_SEARCH_SPACE=DEFAULT buck2 run mode/{opt,inplace} pytorch/t ritonbench:run -- --op fp8_gemm --only torch_fp8_gemm,pt2_fp8_gemm --metrics tflops,accuracy --input-loader=/home/jananisriram/personal/exhaustive_autotune_rowwise_persistent_tma/json_fi les/rowwise_ptma_0.json --output="/home/jananisriram/personal/exhaustive_autotune_rowwise_persistent_tma/autotune/gpu0_bench.csv" --atol=1e-2 --rtol=0.5 2>&1 | tee ~/personal/exhaustive_ autotune_rowwise_persistent_tma/autotune/gpu0.log ``` autotunes on the maximum configs available, rather than the defaults, and skips configs not compatible with TMA. Rollback Plan: Differential Revision: D80958642
This pull request was exported from Phabricator. Differential Revision: D80958642 |
jananisriram
added a commit
that referenced
this pull request
Aug 26, 2025
Summary: Pull Request resolved: #355 X-link: pytorch/pytorch#161442 Validate exhaustive autotuning for FP8 Inductor templates: scaled MM templates require `block_k >= 32`. Before, exhaustive autotuning defaulted to a limited set of autotuning configs, as limitations for exhaustively autotuning on FP8 shapes had not been tested. Differential Revision: D80958642
2bd053d
to
2912432
Compare
jananisriram
added a commit
to jananisriram/pytorch
that referenced
this pull request
Aug 26, 2025
…ates (pytorch#161442) Summary: X-link: meta-pytorch/tritonbench#355 Pull Request resolved: pytorch#161442 Validate exhaustive autotuning for FP8 Inductor templates: scaled MM templates require `block_k >= 32`. Before, exhaustive autotuning defaulted to a limited set of autotuning configs, as limitations for exhaustively autotuning on FP8 shapes had not been tested. Test Plan: ``` CUDA_VISIBLE_DEVICES=0 TRITON_PRINT_AUTOTUNING=1 TRITON_ALWAYS_COMPILE=1 TORCH_LOGS=+inductor TORCHINDUCTOR_FORCE_DISABLE_CACHES=1 ENABLE_PERSISTENT_TMA_MATMUL=1 TORCHINDUCTOR_MAX_AUTOTUNE_GEMM=1 TORCHINDUCTOR_MAX_AUTOTUNE_GEMM_SEARCH_SPACE=DEFAULT buck2 run mode/{opt,inplace} pytorch/t ritonbench:run -- --op fp8_gemm --only torch_fp8_gemm,pt2_fp8_gemm --metrics tflops,accuracy --input-loader=/home/jananisriram/personal/exhaustive_autotune_rowwise_persistent_tma/json_fi les/rowwise_ptma_0.json --output="/home/jananisriram/personal/exhaustive_autotune_rowwise_persistent_tma/autotune/gpu0_bench.csv" --atol=1e-2 --rtol=0.5 2>&1 | tee ~/personal/exhaustive_ autotune_rowwise_persistent_tma/autotune/gpu0.log ``` autotunes on the maximum configs available, rather than the defaults, and skips configs not compatible with TMA. Rollback Plan: Differential Revision: D80958642
facebook-github-bot
pushed a commit
that referenced
this pull request
Aug 27, 2025
Summary: X-link: pytorch/pytorch#161442 Validate exhaustive autotuning for FP8 Inductor templates: scaled MM templates require `block_k >= 32`. Before, exhaustive autotuning defaulted to a limited set of autotuning configs, as limitations for exhaustively autotuning on FP8 shapes had not been tested. Reviewed By: coconutruben Differential Revision: D80958642
2912432
to
2c9a2f4
Compare
This pull request was exported from Phabricator. Differential Revision: D80958642 |
jananisriram
added a commit
to jananisriram/pytorch
that referenced
this pull request
Aug 27, 2025
…ates (pytorch#161442) Summary: X-link: meta-pytorch/tritonbench#355 Validate exhaustive autotuning for FP8 Inductor templates: scaled MM templates require `block_k >= 32`. Before, exhaustive autotuning defaulted to a limited set of autotuning configs, as limitations for exhaustively autotuning on FP8 shapes had not been tested. Test Plan: ``` CUDA_VISIBLE_DEVICES=0 TRITON_PRINT_AUTOTUNING=1 TRITON_ALWAYS_COMPILE=1 TORCH_LOGS=+inductor TORCHINDUCTOR_FORCE_DISABLE_CACHES=1 ENABLE_PERSISTENT_TMA_MATMUL=1 TORCHINDUCTOR_MAX_AUTOTUNE_GEMM=1 TORCHINDUCTOR_MAX_AUTOTUNE_GEMM_SEARCH_SPACE=DEFAULT buck2 run mode/{opt,inplace} pytorch/t ritonbench:run -- --op fp8_gemm --only torch_fp8_gemm,pt2_fp8_gemm --metrics tflops,accuracy --input-loader=/home/jananisriram/personal/exhaustive_autotune_rowwise_persistent_tma/json_fi les/rowwise_ptma_0.json --output="/home/jananisriram/personal/exhaustive_autotune_rowwise_persistent_tma/autotune/gpu0_bench.csv" --atol=1e-2 --rtol=0.5 2>&1 | tee ~/personal/exhaustive_ autotune_rowwise_persistent_tma/autotune/gpu0.log ``` autotunes on the maximum configs available, rather than the defaults, and skips configs not compatible with TMA. Rollback Plan: Reviewed By: coconutruben Differential Revision: D80958642
facebook-github-bot
pushed a commit
that referenced
this pull request
Aug 27, 2025
Summary: X-link: pytorch/pytorch#161442 Validate exhaustive autotuning for FP8 Inductor templates: scaled MM templates require `block_k >= 32`. Before, exhaustive autotuning defaulted to a limited set of autotuning configs, as limitations for exhaustively autotuning on FP8 shapes had not been tested. Reviewed By: coconutruben Differential Revision: D80958642
2c9a2f4
to
83d742c
Compare
This pull request was exported from Phabricator. Differential Revision: D80958642 |
jananisriram
added a commit
to jananisriram/pytorch
that referenced
this pull request
Aug 27, 2025
…ates (pytorch#161442) Summary: X-link: meta-pytorch/tritonbench#355 Validate exhaustive autotuning for FP8 Inductor templates: scaled MM templates require `block_k >= 32`. Before, exhaustive autotuning defaulted to a limited set of autotuning configs, as limitations for exhaustively autotuning on FP8 shapes had not been tested. Test Plan: ``` CUDA_VISIBLE_DEVICES=0 TRITON_PRINT_AUTOTUNING=1 TRITON_ALWAYS_COMPILE=1 TORCH_LOGS=+inductor TORCHINDUCTOR_FORCE_DISABLE_CACHES=1 ENABLE_PERSISTENT_TMA_MATMUL=1 TORCHINDUCTOR_MAX_AUTOTUNE_GEMM=1 TORCHINDUCTOR_MAX_AUTOTUNE_GEMM_SEARCH_SPACE=DEFAULT buck2 run mode/{opt,inplace} pytorch/t ritonbench:run -- --op fp8_gemm --only torch_fp8_gemm,pt2_fp8_gemm --metrics tflops,accuracy --input-loader=/home/jananisriram/personal/exhaustive_autotune_rowwise_persistent_tma/json_fi les/rowwise_ptma_0.json --output="/home/jananisriram/personal/exhaustive_autotune_rowwise_persistent_tma/autotune/gpu0_bench.csv" --atol=1e-2 --rtol=0.5 2>&1 | tee ~/personal/exhaustive_ autotune_rowwise_persistent_tma/autotune/gpu0.log ``` autotunes on the maximum configs available, rather than the defaults, and skips configs not compatible with TMA. Rollback Plan: Reviewed By: coconutruben Differential Revision: D80958642
Summary: X-link: pytorch/pytorch#161442 Validate exhaustive autotuning for FP8 Inductor templates: scaled MM templates require `block_k >= 32`. Before, exhaustive autotuning defaulted to a limited set of autotuning configs, as limitations for exhaustively autotuning on FP8 shapes had not been tested. Reviewed By: coconutruben Differential Revision: D80958642
83d742c
to
d637a66
Compare
This pull request was exported from Phabricator. Differential Revision: D80958642 |
pytorch-bot bot
pushed a commit
to pytorch/pytorch
that referenced
this pull request
Aug 28, 2025
…ates (#161442) Summary: X-link: meta-pytorch/tritonbench#355 Validate exhaustive autotuning for FP8 Inductor templates: scaled MM templates require `block_k >= 32`. Before, exhaustive autotuning defaulted to a limited set of autotuning configs, as limitations for exhaustively autotuning on FP8 shapes had not been tested. Test Plan: ``` CUDA_VISIBLE_DEVICES=0 TRITON_PRINT_AUTOTUNING=1 TRITON_ALWAYS_COMPILE=1 TORCH_LOGS=+inductor TORCHINDUCTOR_FORCE_DISABLE_CACHES=1 ENABLE_PERSISTENT_TMA_MATMUL=1 TORCHINDUCTOR_MAX_AUTOTUNE_GEMM=1 TORCHINDUCTOR_MAX_AUTOTUNE_GEMM_SEARCH_SPACE=DEFAULT buck2 run mode/{opt,inplace} pytorch/t ritonbench:run -- --op fp8_gemm --only torch_fp8_gemm,pt2_fp8_gemm --metrics tflops,accuracy --input-loader=/home/jananisriram/personal/exhaustive_autotune_rowwise_persistent_tma/json_fi les/rowwise_ptma_0.json --output="/home/jananisriram/personal/exhaustive_autotune_rowwise_persistent_tma/autotune/gpu0_bench.csv" --atol=1e-2 --rtol=0.5 2>&1 | tee ~/personal/exhaustive_ autotune_rowwise_persistent_tma/autotune/gpu0.log ``` autotunes on the maximum configs available, rather than the defaults, and skips configs not compatible with TMA. Rollback Plan: Reviewed By: coconutruben Differential Revision: D80958642
pytorch-bot bot
pushed a commit
to pytorch/pytorch
that referenced
this pull request
Sep 2, 2025
…ates (#161442) Summary: X-link: meta-pytorch/tritonbench#355 Pull Request resolved: #161442 Validate exhaustive autotuning for FP8 Inductor templates: scaled MM templates require `block_k >= 32`. Before, exhaustive autotuning defaulted to a limited set of autotuning configs, as limitations for exhaustively autotuning on FP8 shapes had not been tested. Test Plan: ``` CUDA_VISIBLE_DEVICES=0 TRITON_PRINT_AUTOTUNING=1 TRITON_ALWAYS_COMPILE=1 TORCH_LOGS=+inductor TORCHINDUCTOR_FORCE_DISABLE_CACHES=1 ENABLE_PERSISTENT_TMA_MATMUL=1 TORCHINDUCTOR_MAX_AUTOTUNE_GEMM=1 TORCHINDUCTOR_MAX_AUTOTUNE_GEMM_SEARCH_SPACE=DEFAULT buck2 run mode/{opt,inplace} pytorch/t ritonbench:run -- --op fp8_gemm --only torch_fp8_gemm,pt2_fp8_gemm --metrics tflops,accuracy --input-loader=/home/jananisriram/personal/exhaustive_autotune_rowwise_persistent_tma/json_fi les/rowwise_ptma_0.json --output="/home/jananisriram/personal/exhaustive_autotune_rowwise_persistent_tma/autotune/gpu0_bench.csv" --atol=1e-2 --rtol=0.5 2>&1 | tee ~/personal/exhaustive_ autotune_rowwise_persistent_tma/autotune/gpu0.log ``` autotunes on the maximum configs available, rather than the defaults, and skips configs not compatible with TMA. Rollback Plan: Reviewed By: coconutruben Differential Revision: D80958642
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Summary:
X-link: pytorch/pytorch#161442
Validate exhaustive autotuning for FP8 Inductor templates: scaled MM templates require
block_k >= 32
. Before, exhaustive autotuning defaulted to a limited set of autotuning configs, as limitations for exhaustively autotuning on FP8 shapes had not been tested.Differential Revision: D80958642